Applications of AI for Interdisciplinary by Sukhpal Singh Gil (.PDF)

File Size: 12.6 MB

Applications of AI for Interdisciplinary Research by Sukhpal Singh Gill
Requirements: .PDF reader, 12.6 MB
Overview: Applying Artificial Intelligence (AI) to new fields has made AI and data science indispensable to researchers in a wide range of fields. The proliferation and successful deployment of AI algorithms are fuelling these changes, which can be seen in fields as disparate as healthcare and emerging Internet of Things (IoT) applications. Machine learning techniques, and AI more broadly, are expected to play an ever-increasing role in the modelling, simulation, and analysis of data from a wide range of fields by the interdisciplinary research community. Ideas and techniques from multidisciplinary research are being utilised to enhance AI; hence, the connection between the two fields is a two-way street at a crossroads. Algorithms for inference, sampling, and optimisation, as well as investigations into the efficacy of Deep Learning, frequently make use of methods and concepts from other fields of study. Cloud computing platforms may be used to develop and deploy several AI models with high computational power. The intersection between multiple fields, including math, science, and healthcare, is where the most significant theoretical and methodological problems of AI may be found. To gather, integrate, and synthesise the many results and viewpoints in the connected domains, refer to it as interdisciplinary research. In light of this, the theory, techniques, and applications of Machine Learning and AI, as well as how they are utilised across disciplinary boundaries, are the main areas of this research topic.
Genre: Non-Fiction > Tech & Devices

Free Download links:

https://tbit.to/iozs1ak2n85j.html

https://upfiles.com/DpbeNIUV